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In principle, the refinement of a pseudosymmetric structure starting from an idealized high-symmetry 
structure is impossible by routine methods of analysis, such as least-squares, even when the atomic 
displacements are very small. A much more helpful approach is by a method of successive approxima- 
tions. This uses first the most important displacement parameters, whose magnitudes (but not signs) 
can be estimated from electron-density maps or difference maps based on the ideal structure. Certain 
of their signs can be allotted arbitrarily, and the further analysis follows step by step until a realistic 
trial model is obtained in which all (or at least a large proportion of) the displacement parameters have 
the correct and consistent signs and very roughly correct magnitudes. At this stage, routine use of 
least-squares refinement becomes permissible. 

This method has been applied successfully to KNbO3 at room temperature, using X-ray diffraction 
data. The structure is strictly isomorphous with orthorhombic BaTiO3, with space group Bmm2 and 1 
formula-unit per cell, but all deviations from the perovskite aristotype are rather larger in KNbO3. The 
NbO6 octahedra are nearly regular, with Nb displaced by 0"17/~ from their centres, giving Nb-O bond 
lengths of 1.86, 1.99, and 2.18/1,. Since all the octahedra are parallel, the crystal is ferroelectric. 

Comparison of KNbO3 with BaTiO3 directs attention to the importance of O-O repulsions in the 
octahedron edges. By treating nearest-neighbour contacts as a system of links in a state of compression 
or tension, and applying simple statics, a consistent though qualitative explanation can be given of all 
the differences, in terms of the difference in Nb-O and Ti-O bond lengths on the one hand, in size and 
polarizability of K and Ba on the other; the structural features attributable to each of these causes 
can be distinguished. 

Introduction 

Potassium niobate, KNbO3, has a structure belonging 
to the perovskite family. It is polymorphous,  and iso- 

* Work done during leave of absence from the Department 
of Chemistry, University of Connecticut, Storrs, Connecticut, 
U.S.A. 

morphous  in all its forms with bar ium titanate, though 
the corresponding transit ion temperatures are higher 
for potassium niobate.  Their  ferroelectric properties 
are also closely similar. The present work is concerned 
with the or thorhombic  form, stable at room tem- 
perature. The general character of  the structure has 
been known for a good many  years; the determinat ion 
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of the atomic parameters remained to be done, and 
is the subject of the present work. 

In view of the discussions there have been about 
barium titanate concerning the difficulties of this type 
of structure (Evans, 1961; Geller, 1961; Megaw, 1962), 
the steps involved in the Fourier methods adopted here 
were examined rather carefully, and some account of 
the important points is given below. As a result of 
the structure analysis, it was found that physically 
meaningful values could be obtained both for position 
parameters and for thermal parameters, and that limits 
of error could be estimated. The precision of the par- 
ameters, though not as good as might have been 
achieved with more elaborate experimental work, al- 
lows a useful description of the structure to be given, 
with sufficient accuracy for most purposes. 

Unit cell and space group 

It was shown by Wood (1951) that room-temperature 
KNbO3 is orthorhombic, and that two symmetry axes 
(here called x and z) lie along the cube face diagonals 
of the aristotype*, giving a unit cell of approximately 
5.6 x 4 x 5.6 A, which is face-centred on B. Since the 
material is ferroelectric, the point group is polar, and 
is therefore {mm2} (the curly brackets indicating that 
the axial directions implied in this symbol have not 
yet been matched to those chosen for the description 
of the crystal). Since there is only one formula unit per 
lattice point in the hettotype* as in the aristotype, both 
Nb and K must lie on special positions, which, in this 
point group, can only be the intersections of two mirror 
planes, coinciding with a rotation axis - the polar axis. 
It remains to determine the direction of this axis rel- 
ative to the unit cell. Most workers have apparently 
assumed, from the close analogy with orthorhombic 
BaTiO3, that the space group is the same, and that the 
polar axis is the long diagonal of the rhombus corre- 
sponding to a cube face. We have been unable to find 
any report of experimental work explicitly confirming 
these assumptions, but the present work does so, as 
explained in a later section. If the long diagonal of 
the rhombus is called z, the space group is then Bmm2. 

Both the choice of origin on z and the choice of sense 
of z are arbitrary. Taking the origin at Nb, the atomic 
coordinates are: 

Nb 0,0,0 
K 0,½,½+zx 
O(1) 0,½,zl 
0(2) 1 1 ~" "{- X2, 0 ,  ~ -'1- Z 2 

The sense of displacement of K may arbitrarily be 
taken as positive. Since the displacement parameters 
zx,  Zl, zz, and xz are all small the structure is already 
known qualitatively; it remains to find their detailed 
values. 

* The aristotype (~Otavo¢, best) is in this case the ideal 
perovskite structure; a hettotype (Orro~, less good) is any of 
the lower-symmetry but topologically similar variants. 

Principles of refinement 

The difficulty of a detailed study of this structure 
arises from its pseudosymmetric character. Automatic 
refinement procedures cannot legitimately take the 
aristotype as a starting point, because they cannot 
generate displacements which lower the symmetry; 
moreover, the basic assumption underlying such pro- 
cedures, that the structure factors vary linearly with 
position parameters throughout the range examined, 
is certainly not valid when the range includes special 
values. A different approach is needed. 

Because of the heavy atom at a point which can be 
chosen as origin, the real parts of all (or nearly all) 
structure factors are large and positive, and the meas- 
ured [F['s are a good approximation to them. Since 
the real part of F is the average of F and its complex 
conjugate, the electron density obtained from a syn- 
thesis of the real parts, or of the measured [F['s, is the 
average of the electron densities of the true structure 
and its image by inversion through a centre of sym- 
metry at the origin. The map so obtained therefore 
represents a centrosymmetric structure where the dis- 
placed atoms of the true structure are replaced by 
centrosymmetric pairs of half-atoms with displacement 
parameters of the same magnitude. This map allows 
the magnitudes of the displacement parameters to be 
estimated but not their signs. 

The signs cannot be found as long as a centrosym- 
metric model is used, because this gives only real F 's  
and therefore prohibits any refinement of phase angles, 
while all information about displacement signs is con- 
tained in the imaginary part of the Fobs'S. For a start, 
one displacement parameter must be given an arbitrary 
sign. If the parameter chosen belongs to the second 
heaviest atom, and has a reasonably large magnitude, 
its contribution to the imaginary part of the F's will 
be sufficient to allow a useful approximation to the 
phase angles. A synthesis using the measured IFl's with 
these first phase angles may, by emphasizing one half- 
atom of each pair at the expense of the other, allow 
the true structure to be picked out; or, if the approxi- 
mation is still too rough, it may at least indicate the 
displacement sign for one other atom, and thus allow 
an improved approximation as the next step. Only 
when all displacement signs are clearly established 
(unless perhaps for a few displacements very much 
smaller than the rest) is automatic refinement a safe 
procedure. 

In the early stages of sign determination, the reflex- 
ions which give most information are just those which 
do not satisfy the conditions for a good half-atom 
approximation, namely those where the real part of F 
is relatively small. Preferential use of evidence from 
classes of reflexions where this is systematically true 
may be a help. In the present work, no deliberate 
weighting of reflexions was done, but comparison of 
effects from the (hOl) and (h 1/) layers, discussed below, 
illustrates the point. 
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There is a real danger, unless one is on the watch 
for it, that signs of displacements may be wrongly de- 
duced from small indications which are in fact only 
random error. An example occurred in the present 
work, and is described in a later section. If it were not 
for this effect of random error (perhaps in some cases 
rounding-off error) the impossibility of automatic re- 
finements from the centrosymmetric model would be 
obvious. Where no displacement parameter is delib- 
erately given a sign, the refinement procedure must rely 
on random error to provide one and may equally 
readily accept inconsistent signs for several displace- 
ments at the same time. Similar troubles are likely 
when the parameter to which an arbitrary sign is al- 
lotted initially is given a trial magnitude much less than 
its true value. Once incorrect signs have been accepted, 
it is hard for the later stages of refinement to alter them. 
Thus a scrutiny of the steps taken to establish a sui- 
table trial structure before automatic refinement begins 
is a much more searching test of reliability of the final 
structure than is a routine assessment of the errors of 
the latter by statistical methods. 

The correct stage for beginning the refinement of 
thermal parameters is also important. It is not legiti- 
mate to allow them to increase (above the rather small 
values expected for normal atoms in chemically similar 
compounds) until the displacement parameters are 
known both in sign and in approximate magnitude. 
The greater the displacement parameters, the less the 
relative sensitivity of the calculated IFl's to the corre- 
sponding thermal parameters. Hence correlation be- 
tween displacement and thermal parameters is greatest 
for trial structures with very small displacements, and 
if both are allowed to refine together from a trial model 
unnecessarily close to the aristotype, an increase in the 
thermal parameter may do duty as substitute for the 
increase in displacement, whose refinement will there- 
fore be slowed down and perhaps obscured altogether, 
whereas with a better trial structure the distinction 
might be quite obvious. This need for delay before al- 
lowing any increase in the isotropic thermal parameters 
applies even more strongly to the introduction of an- 
isotropic thermal parameters. 

The question of anisotropic thermal parameters is 
relevant to the interpretation of the half-atom map. 
If a displacement is small, the pair of half-atoms may 
not be resolved, and its elliptical peak may not be 
distinguishable analytically from a single anisotropic 
atom at the centre. This does not matter, because the 
half-atom map is only being used as a step towards 
the deduction of the single-displaced-atom map, and 
it is the difference between the latter and the centro- 
symmetric anisotropic atom which has to be considered. 
If the displaced-atom model is a clear improvement 
on the half-atom model, it is thereby an improvement 
on the anisotropic-atom model; if the postulated dis- 
placement is wrong, the centrosymmetric feature on 
the difference map will not refine away, and the model 
must be reconsidered. The introduction of thermal 

anisotropy before displacement signs are known thus 
prevents further progress; the initial assumption of 
small isotropic thermal parameters allows a model to 
be set up, after which the restriction can be relaxed. 

Experimental work and refinement procedures 

The crystal used was from a batch kindly provided by 
Dr E. A. Wood; it was a prism of form {101 } elongated 
parallel to [010], approximately 0.01 x 0.01 x 0.04 cm 
in dimensions. 

Cell dimensions were measured by the method of 
Farquhar & Lipson (1946). The values, a =  5.697, b=  
3.971, c= 5.721 ~,  agreed to within about 0.001 ~ with 
those of Vousden (1951) and Shirane, Newnham & 
Pepinsky (1954). 

Weissenberg photographs of layers hOl to h31 were 
taken with Zr-filtered Mo Ka radiation, using the 
multiple-film technique; intensities were measured 
visually and corrected for Lorentz and polarization 
effects and for absorption. This work (as well as the 
measurement of cell dimensions) was done by Dr R. 
Ueda, during a visit to Cambridge, and there was un- 
fortunately no opportunity to supplement the data then 
or later by further observations, as would obviously 
have been desirable had time permitted. Since useful 
conclusions can be drawn from the existing evidence, 
in spite of its limited quantity, it seemed preferable to 
publish it rather than wait indefinitely for a chance to 
achieve greater precision. 

In the refinement, atomic scattering factors for K 
and O were based on those of Berghuis and co-workers, 
for Nb on those of Thomas & Umeda (1957). Modifi- 
cations for the state of ionization were made by joining 
the value for 0 2- at the origin smoothly to the curve 
for neutral O at (sin 0)/2 = 0.2, and the value for Nb 5+ 
at the origin smoothly to the curve for Nb 4+ at (sin 0)/2 
=0.4; a dispersion correction to the real part of the 
scattering factor (Dauben & Templeton, 1955) was 
made for Nb. The scattering factors so obtained were 
used for the least-squares refinement. For the Fourier 
refinement they were fitted by least squares to Forsyth- 
Wells functions. The refinement of difference Fouriers 
was carried out with a program written for EDSAC II 
by M. Wells. The first stage of the least-squares refine- 
ment used the Busing-Levy program and was done for 
us by R. Dobrott at Harvard with the kind permission 
of Professor W.N. Lipscomb; subsequent work was 
done at the University of Connecticut, and incorpo- 
rated a dispersion correction to both real and imagi- 
nary parts. 

Structure factors 

The structure factors are all of the form 

fNb + f~  exp 2nilzK + fo  exp 2nilzl 
COS + 2fo exp 2nilz2( sin )2nhx, 

the signs, and the choice between cos or sin in the last 
term, depending on the conditions satisfied by h, k, 1. 
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It  is convenient to separate the real and imaginary 
parts ;  the coefficients of  the different atomic scattering 
factors in these for the various classes of  reflexions are 
given in Table 1. In the aristotype, all c's (cosine fac- 
tors) are unity and all s 's  (sine factors) zero; in the 
actual structure, c's are generally nearly unity and s 's 
small. 

Study of  the hOl projection 

An electron density map was made f rom the observed 
IFl's. This showed peaks elongated along the long 
axis, z. 

This provides strong direct evidence for the direc- 
tion of  the polar  axis in the structure. Only along the 
polar  axis can there be displacement of  atoms from 
special positions [except for 0(2)]. Hence only in this 
direction can the half-atom map  show doubled or 
elongated peaks due to displacements. On the map,  
the elongation of  the K peak, which overlaps with no 
other atom, is quite unmistakable,  and is parallel to 
the long diagonal of  the rhomb.  Even supposing the 
elongation were due to thermal  anisotropy, if the 

long diagonal were not the polar  axis it would mean 
that  both thermal parameter  and displacement parallel 
to the polar  axis must be smaller than in other direc- 
tions, which is improbable.  A direct check was, how- 
ever, made by taking a trial structure with the shorter  
diagonal as the polar  axis; it gave worse agreement,  
and did not refine. In the literature, the two alternative 
definitions of  axial direction c (or z) in terms of  the 
polar  axis or of  the long diagonal of  the rhomb have 
been used uncritically; the present work provides evi- 
dence that  they are in fact consistent with each other. 

The estimate of  0.0156 for zK from this map,  and 
the allocation of  a positive sign to it, allowed phases 
to be calculated and a new map to be constructed. 
The same isotropic temperature  factor was used for 
all atoms, with a value B =  0.6 A 2 estimated f rom pre- 
l iminary studies; tests with B~ assigned separate values 
ranging from 0 to 1.2 A 2 showed no significant dif- 
ferences. 

It had been clear f rom the first map  that  the next 
most  important  displacement was zz; on the new map, 
the double peak indicated a magnitude of  0.023, and 

Types of indices 

Table 1. S t ruc ture  f a c t o r s  

Coefficients of atomic scattering factors* 

h and l h + l  k f~b 
Even 4n Even 1 
Even 4n Odd 1 
Even 4n -t- 2 Even 1 
Even 4n + 2 Odd 1 
Odd 4n Even 1 
Odd 4n Odd 1 
Odd 4n + 2 Even 1 
Odd 4n + 2 Odd 1 

Real part Imaginary part 
f ~  

+ czK 
- -  CZK 

-~- CZI{ 

- -  CZK 

- -  CZK 

+ czj~ 
- -  C Z  K 

+ CZK 

fo ~ fo 
+ CZl  + 2CZ2CX2  + S Z K  + SZ l  + 2 S Z 2 C X 2  

- -  c z l  + 2 c z 2 c x 2  - -  S Z K  - -  SZ l  + 2 S Z 2 C X 2  

+ CZI - -  2CZ2CX2  + S Z K  + SZ l  - -  2 S 2 2 C X 2  

- -  CZI - -  2 C 2 2 C X 2  - -  S Z K  - -  SZ1 - -  2 S 2 2 C X 2  

+ CZI - -  2 S Z 2 S X 2  - -  S Z K  + SZ1 + 2 C Z 2 S X 2  

- -  CZl - -  2 S Z 2 S X 2  + S Z K  - -  SZ l  + 2 C Z 2 S X 2  

+ CZl + 2 S Z 2 S X 2  - -  S Z K  '1- SZ1 - -  2 C Z 2 S X 2  

- -  CZ1 "-}- 2 S Z 2 S X 2  + S Z K  - -  SZ l  - -  2 C 2 2 S X 2  

* Abbreviations used" 
cz = cos 2rdz, sz = sin 2rclz 
cx=cos 2rchx, sx=sin 2rchx 

ZK 
Zl 
Z2 
X2 

(1) 
Table 2. Disp lacemen t  p a r a m e t e r s  and  thermal  p a r a m e t e r s  

(2) (3) (4) (5) 
From From least-squares : 

From From From Fourier oscillation 
hOl h 1 l hOl / h 11 3-D extremes 

0.0148 0-0172 0.0160 0.0152 0.0164-0.0177 
- -  - -  (0.020) 0.0169 0.0193-0.0232 

0.0312 0.0364 0-0338 0.0337 0.0348-0.0350 
0.0017 0.0038 0.0028 0.0036 0.0037-0.0038 

Final 
mean and error 

0.017+0.001 
0.021 + 0.002 
0.035 + 0.002 
0.004 + 0.002 

BNb 0.55A2 0.6/~2 _ 0.52 A 2 (11) 0-474-0"510/~k 2 
(33) 0"531-0"576 

BI~ 0"75 1"0 - -  0"95 (11) 0"749-0"780 
(33) 0"667- 0"726 

Boo) 0"85 1"0 - -  0"69 (11) 0"620- 0"734 
(33) 1"110-1"611 

Bo(2) 0"85 1-0 - -  0"89 (11) 0"779-0"886 
(33) 0"813 - 1"010 
(13) ( -0 .125)- ( -0 .216)  

* The thermal parameters labelled (11), (33) and (13) are the quantities 
4a2flll, 4c2fl33, and 4acfll3, where 
B(sin 0/2)2 =ill ih2 +f122k2 +fl33/2 -t- 2fl12hk + 2ill 3hl + 2f123kl. 

0.49 + 0-02/~x 2 
0"55+0"02 

0"76 + 0"02 
0"70 + 0-03 

0"68 + 0-06 
1"36 + 0.25 

0"83 + 0"06 
0.95+0.14 

-0"17+0-05 

As explained in the text, fl22 can  not be determined from the data; fl12 and fl23 are  always zero, as is ill3 for all atoms except (02). 
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a slight enhancement of the peak in the direction indi- 
cating a negative sign was mistakenly accepted as 
significant. This peak also gave a small positive value 
for x2. O(1) was too close to Nb to allow the deter- 
mination of zl, but the other parameters were refined 
for several cycles. 

When the parameters so obtained were used to cal- 
culate F 's  for the higher layers, it became clear that 
something was wrong, bezause the R values were about 
20% for layers 1 and 3 and only 9% for layers 0 and 
2, though there were no gross systematic intensity dif- 
ferences between odd and even layers to account for 
it. Inspection showed that the trouble was most ap- 
parent for reflexions with h and l even, ½(h+ l) odd 
and k odd. It can be seen from Table 1 that this class 
of reflexion has the systematically smallest real part, 
all contributions from atoms other than Nb being 
negative, and therefore it is most sensitive to the rela- 
tive signs of zK and z2. On changing the sign of z2, 

Nb+O 

Nb 

ZO 

.½1-Z" K 

ZK 

/I 
IJ 

'"4" ZK 

ii ~ 
Nb 

(a) 

\ 

-K 
(b) 

Fig. l. Effect of  Nb/O(1) overlap on measured displacement,  
(a) in hOl projection, (b) in hll generalized projection. 

the R values for the odd layers dropped by about 
6%. 

Further refinement of hOl difference maps gave the 
parameters shown in Table 2, column 1. 

hll  generalized projection 

As a check, and to see what further information could 
be obtained, the same procedure was applied to the 
hl l  layer. For the first Fo map and difference map, zx 
was set at the value obtained from hOl, all other dis- 
placements were made zero, and a single isotropic tem- 
perature factor was assumed. Very clear indications 
were given of a positive sign for z2, and smaller indi- 
cations of a positive sign for x 2. With zl still kept at 
zero, four further cycles of refinement led to the par- 
rameters of column 2 in Table 2. 

The problem of atom 0(1) 

In the hOl projection, O(1) is poorly resolved from Nb; 
together they form a composite peak whose maximum 
lies slightly on the O(1) side of Nb. Since the refine- 
ment procedure assumes that there is a large centro- 
symmetric peak at the origin, it measures position par- 
ameters from the maximum, which is most nearly cen- 
trosymmetric, rather than from Nb. 

An estimate of the separation of Nb from the com- 
posite peak can be made by comparison of the values 
of z~: derived from hOl and h14 as illustrated in Fig. 1. 
In the hl l  map, the O(1) peak is negative, and there- 
fore the composite maximum is on the side of Nb 
remote from O(1). Hence the true value of zi~ lies be- 
tween the values measured from hOl and hi/, and an 
order-of-magnitude estimate of the Nb-peak displace- 
ment is given by half their difference. A similar argu- 
ment holds for the two values of z2. The estimates 
from zK and z2 are -0.0012 and -0.0026 respectively. 
They agree in their order of magnitude and in their 
negative sign. Since Nb is on the negative side of the 
peak, O(1) must be on the positive side. A rough esti- 
mate of its magnitude can be obtained on the assump- 
tion that the Nb and O(1) displacements from the 
maximum are in the inverse ratio of the Nb and 0(2) 
peak heights. The value so obtained is given in brackets 
in column 3 of Table 2. In the same column are given 
the means of the displacement parameters from hOl 
and hll, which, from the above argument, should be 
better than either separately. 

Three-dimensional refinement 

With the best parameters obtained from previous work 
giving a trial structure, three-dimensional refinement 
of all layers hOl to h3l was carried out in two ways: 
(i) by differential Fourier synthesis, with separate iso- 
tropic temperature factors for the different atoms, (ii) 
by a full-matrix least-squares program, with anisotropic 
temperature factors. Scaling had to be done by com- 
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parison of Z IFobsl with 27 IFealel for each layer sep- 
arately, because of the lack of photographs about any 
other axis than y; this means that no reliable values 
could be expected for anisotropic thermal parameters 
along y, and though they were evaluated they are not 
reported. Neither refinement converged as well as 
would have been expected in the absence of this scaling 
problem, oscillations of certain parameters in succes- 
sive cycles of the least-squares method being rather 
marked. This limited the precision of the results, but 
they nevertheless confirmed those from the combined 
hOl/hll projections and improved on them for some 
parameters. In the final stages, attention was concen- 
trated on the least-squares work, and it became clear 
that the oscillations were confined between narrower 
and recognizable limits, set out in Table 2, column 5. 
The final R was 9'70/0. 

Atomic parameters and their accuracy 

The final values are those in the last column of Table 2; 
they are the rounded-off means of the ranges in column 
(5). 

There are three ways of estimating the errors: (a) 
by the statistical method incorporated in the least- 
squares program, (b) as half the difference between the 
last two cycles of this program, and (c) by comparison 
of the separate results of the hOl/hll work and the two 
three-dimensional refinements. Obviously in a case like 
this the conditions which would allow us to rely un- 
critically on (a) are not satisfied. Since a least-squares 
analysis is based on the assumption of linear relations 
between parameters and F's  over the whole range of 
parameters admitted into the analysis, and since this 
assumption is emphatically not true when the displace- 
ment parameters systematically include zero within the 
range, one cannot say without detailed examination 
how accurate the corresponding error estimates may 
be when the final values of the displacements are small 
but not zero. The actual final values obtained for the 
standard deviations of the position parameters are, 
however, reasonable; they are +0.0007, +0-0018, 
+ 0.0017, + 0.0019, for zK, Zl, z2, and x2 respectively. 

Inspection of the least-squares results in successive 
cycles suggests that method (b) is reliable for order of 
magnitude. It may however underestimate the errors 
in parameters which do not interact much with others. 

Method (c) is likely to overestimate the final error, 
as the Fourier analysis was not carried out in such 
detail as the least-squares work. Comparison shows 
that the error of the position parameters calculated by 
this method is never more than twice the error calcula- 
ted by (b), which is satisfactory confirmation; for the 
thermal parameters, there is only order-of-magnitude 
agreement. 

The errors finally accepted and listed in the last 
column of Table 2 are those given by either (a) or (b), 
whichever is greater, for the position parameters, and 
by (b) for the thermal parameters. They are to be 
treated as if they were standard deviations. All posi- 
tion parameters are thus known to within + 0.002 or 
less, and nearly all thermal parameters in the (010) 
plane to within + 0.2/~2 or less. 

The thermal parameters are of the order of magni- 
tude expected for oxides with semipolar bonding, none 

X 

Fig.2. Projection of structure on 010; dashed line outlines 
unit cell, full lines outline NbO6 octahedra. All displace- 
ments from aristotype somewhat exaggerated. 

1 "99 

1 "87 Y 
2'17 

1 '99 
Y 

(a) (b) 

Fig. 3. Perspective diagrams of NbO6 octahedra, showing (a) Nb-O bond lengths, (b) O-O contact distances. 
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being much greater than about 1.0 A 2. None of the 
atoms show very clear thermal anisotropy, though that 
of O(1) is possibly real and that of 0(2) more doubt- 
fully so. For the latter, the principal values of B are 
1.00 and 0.80 A 2, the major axis lying at 35 ° to the 
x axis in the angle xO2, i.e. approximately at right 
angles to the Nb-O bond; but the differences are too 
close to experimental error for the anisotropy to be 
significant. 

Description of the structure 

A projection on (010) is shown in Fig.2, (with some 
of the displacements exaggerated to show their rela- 
tionship). An isolated octahedron is shown in Fig. 3(a) 
and (b). Bond lengths and angles are listed in Table 3. 

The oxygen octahedron surrounding Nb remains 
very nearly regular; in the (010) plane there is a dif- 
ference of 0.09 A between the long and the short edges, 
arising from the small x2 parameter; while for the edges 
inclined to this plane, involving O(1), there is a dif- 
ference of 0.10 A, between the four long ones and the 
four short ones, due to the difference between the z~ 
and the .7 2 displacements. 

Within the octahedron, Nb is displaced by 0.030c, 
or 0.17 A, from the centre of mass of the oxygen atoms 
towards the mid point of the short 0 (2) -0(2)  edge. 
There are thus two long and two short Nb-O(2) bonds, 
the Nb-O(1) bonds being of intermediate length, but 
rather shorter than the mean of the other two. 

The environment of K is also very regular, the ex- 
treme difference between long and short bonds being 
only 0.09 A_. This difference occurs between bonds in- 
clined to the (010) plane. It is interesting to note that 
the tendency to equality between the two K-O(1) 
bonds, lying in (010), is preserved at the expense of 
the differences in the K-O(2) bonds and in the O(1)- 
0(2) edges of the octahedron. 

Discussion 

No very unexpected features have appeared in this 
structure. The most striking thing is the close resem- 
blance to BaTiO3, illustrated in Table 4. A detailed 

comparison of the two may therefore help to throw 
light on the character of the structure-building forces, 
and some preliminary comments will be made below. 

The other point of interest is the comparative ease 
with which this structure was solved from visually 
measured intensities leading to a final R value of 10%, 
while tetragonal BaTiO3 is notorious for the trouble 
it gave in spite of the extremely accurate intensity 
measurements (Evans, 1961). We had hoped for more 
favourable conditions in KNbO3 because of the lower 
ratios of the scattering factors of the cations to those 
of oxygen - a condition which had allowed the solution 
of the structure of orthorhombic BaTiO3 by neutron 
diffraction [Shirane, Danner & Pepinsky (1957)] - and 
perhaps also from the expected greater displacement 
of Nb. Both these factors did help. But the really im- 
portant one, which might have been foreseen from the 
outset, had been overlooked, namely the difference in 
the different classes of structure factors of the aristo- 
type due to the interchange of relative weights of the 
A and B cations. For BaTiO3, taking the origin at Ba, 
the smallest class of structure factors involving the 
atom 0(2) has the form fBa--(fTi+fo), while for 
KNbO3, with Nb at the origin, the smallest class has 
the form fNb--(fK+3fo). As noted above, it is the 
systematically weaker reflexions which are the best 
indicators of the signs of the displacements; and it was 
the existence of this particularly weak class in KNbO3 
which made an unambiguous solution of the structure 
possible. 

The differences between orthorhombic KNbO3 and 
orthorhombic BaTiO3 can be seen from Table 4. 
Several points appear to be significant. 

(i) The deviations from the aristotype are qualita- 
tively alike for both materials, but their magnitude is 
consistently greater for KNbO3, as shown by the ratios 
in the last column. 

(ii) These systematic effects are most marked for the 
sheet of atoms, perpendicular to the y axis, containing 
Nb or Ti. 

(iii) The individual values and mean values for O-O 
contacts are consistently greater for KNbO3 than for 
BaTiO3 in this plane; for other O-O contacts the mean 

Nb-O(1) (2)* 1.991 
Nb-O(2) (2) 1"863 
Nb-O(2) (2) 2"180 

Table 3. Bond lengths and angles 
_+ 0"0Ol/~ O(2)(s)-Nb-O(2)(s)t 
_+ 0 . 0 0 7  O(2)(l)-Nb-O(2)(l) 
-+ 0 - 0 0 9  O(2)(s)-Nb-O(2)(l) 

(1)* 97.4_+ 1.2 ° 
(1) 83.4_+ 1.0 
(2) 89-7 _+ 0"5 

K-O(I) (1) 2.837 
K-O(1) (2) 2.848 
K-O(1) (1) 2.883 
K-O(2) (4) 2.792 
K-O(2) (4) 2.873 

_ 0.014 O(l)-Nb-O(2)(s) (4) 
___ 0"001 O(1)-Nb-O(2)(l) (4) 
_+0.014 
_+ 0.008 
_+0.010 Nb-O(1)-Nb (1) 

Nb-O(2)-Nb (2) 
O(1)-O(2) (4) 2.780 + 0.012 
O(1)-O(2) (4) 2.884 + 0.012 
0(2)-0(2) (1) 2"802 + 0"024 
0(2)-0(2) (1) 2-894 _ 0.024 
0(2)-0(2) (2) 2.860_+ 0-001 

92.3 + 0.6 
87.5 + 0"6 

172.8+0.7 
168.6+0.6 

* Numbers in this column indicate numbers of equal bonds or angles per formula unit. 
t For the O-Nb-O angles, the letter s or l indicates whether the Nb-O(2) bond involved is short or long. 
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values for the two materials are the same, though there 
is more scatter for KNbO3. 

(iv) In both  materials the mean values of  K - O  or 
Ba-O bonds are equal to those of  O-O,  and the range 
of  individual values is similar to that  for O-O,  though 
the detail of  the scatter is different. 

(v) The fact that  the cell edge b is rather larger in 
BaTiO3 than  in KNbO3, though the edges a and c are 
smaller, is not  qualitatively significant, but is a con- 

sequence of  the similar signs and different magnitudes 
of  the changes of  axial ratio. 

Though a quanti tat ive explanat ion of  these effects 
must lie in the realm of  theoretical chemistry, it is 
worth while trying to give a qualitative picture using 
rather simple concepts. 

The equilibrium state of  the crystal may be thought  
of  as involving the interplay of  stresses between the 
Nb-O,  K-O,  and O - O  links of  the framework.  Con- 

Table 4. Comparison of KNbO3 and BaTiO3 (orthorhombic) 
Values for BaTiO3 are calculated from the parameters of Shirane, Danner & Pepinsky (1957) 

Lattice dimensions 

Axial parameters 

KNbO3 

a 5"697 ]t 5"669/Yt 
b 3"971 3"990 
c 5"720 5"682 

c/a- 1 + 0.004 + 0"002 
b/a- 1 - 0.015 - 0.005 

Atomic parameters (relative to Nb or Ti 
at origin) 

zi~ or ZBa 40"017 +0"010 
zl + 0"021 + 0"020 
Z2 + 0"035 + 0"023 
X2 + 0"004 + 0"003 

Parameter difference between Nb or Ti 
and geometrical centre of configuration 
of neighbouring oxygen atoms 

Octahedron 0-030 0.022 
Square 0.035 0.023 

Displacement of Nb or Ti from geometrical 
centre of configuration of neighbouring 
oxygen atoms 

Octahedron 0.171/k 0.125/k 
Square 0.198 0.131 

Bond lengths 
(i) Nb--O or Ti--O 

Short 
Long 
Intermediate 
Mean of long and short 
Difference of long and short 
Difference of mean and intermediate 

(ii) K-O or Ba--O 
In (010) plane (1) 

(2) 
(1) 
Mean 

Inclined to (010) plane (4) 
(4) 
Mean 

1.86 A 1.90 A 
2.18 2.11 
1.99 2.00 
2.02 2.005 
0.32 0.21 
0"03 0.005 

(iii) O-O 
Octahedron edge in 
(010) plane 

2-84 2"78 
2-85 2"83 
2"88 2"90 
2-855 2"835 
2"79 2"80 
2"87 2"86 
2"83 2"83 

BaTiO3 BaTiO3:KNbO3 

0.50 
0.33 

0.60 

0.65 

0.65 

(1) 2.80 2.80 
(2) 2-86 2.84 
(1) 2.89 2-87 
Mean 2.85 2.835 

Octahedron edge inclined 
to (010) plane (4) 2.78 2.81 

(4) 2"88 2"85 
Mean 2.83 2.83 

Edge of K-O polyhedron in 
(010) plane 2.85 2.835 

0"70 
0"017 
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sider first the aristotype. If NbO6 octahedra alone con- 
tributed to the energy, the O-O links would be in a 
state of compression, acting as struts, while the O-Nb-  
O links would be in a state of tension, acting as ties. 
Similar conditions would hold for the KO12 poly- 
hedra, if they alone contributed. Since the O-O edges 
are in fact common to both, and are always in com- 
pression because the interatomic force here is repulsive, 
the net effect of the O-Nb-O and O-K-O links must 
be a tensile stress; hence, since the Nb-O bonds are 
stronger than K-O and vary more rapidly with dis- 
tance, the O-Nb-O links must be in tension, while the 
O-K-O links may be either in tension or in compres- 
sion. 

If the stress-strain relation in a link is non-linear, 
with greater energy differences for small decreases of 
length than for small increases of equal magnitude, the 
stress in O-Nb-O can be relieved without overall 
change of length by allowing Nb to move off-centre; 
alternatively, the length of the tie can be increased 
while the stress remains equal to that in the symmetri- 
cal configuration; or, more generally, there will be an 
increase of length combined with a decrease in tension. 
This argument does not inquire into the reason for 
the non-linear behaviour, which is in fact likely to be 
strongly influenced by the polarization of O by the 
closer approach of Nb. 

In orthorhombic KNbO3, the displacement of Nb 
is such as to reduce the tension in two O-Nb-O ties 
at right angles. We therefore argue as follows. 

(i) The relief of O-Nb-O tension will be greatest (by 
analogy with the one-dimensional case) in directions 
where long and short Nb-O bonds alternate, i.e. the 
direction of the Nb displacement. Hence the average 
relief of O-O compression will be greatest in this direc- 
tion. Assuming that the octahedra are not free to ro- 
tate, this will therefore be the direction of elongation 

C /: 

D 

S 
J E 

Fig.4. Projection of part of unit cell, schematic: K and O(1) 
(G) are shown undisplaced, and Nb and 0(2) (A to F) with 
exaggerated displacements; shaded sectors of 0(2) indicate 
regions involved in tightly bonded Nb-O triangles. 

of the unit cell. This prediction agrees with the ex- 
perimental observation. 

(ii) The average relief of O-O compression in the 
plane of the Nb displacement will be greater than in 
directions inclined to it, since the O-Nb-O ties per- 
pendicular to this plane retain the length appropriate 
to a symmetrical configuration. The average length of 
0(2)-0(2) edges will therefore be greater than of 
O(2)-O(1) edges. The truth of this prediction can be 
seen from Table 4, where the lengths are 2.85 and 
2.83 A respectively. 

(iii) The argument in (ii) neglects the effect in the 
aristotype of stresses in K-O; as explained above, 
compression in K-O will enhance the effect, tension 
in K-O will diminish it. The rather large differences 
observed between the two kinds of O-O edges argue 
for compression in K-O. 

(iv) The condition that the octahedra are not free 
to take up positions tilted relative to one another is 
imposed by the length of the K-O bond. Any sub- 
stantial tilting would produce intolerable compressions 
in some of the O-K-O struts. This is a restatement 
of the familiar idea that packing requirements of K 
are the effective cause maintaining the parallel orien- 
tation of the octahedra. 

Comparison of BaTiO3 with KNbO3 shows that the 
effects are closely similar but smaller in magnitude. 
Hence, in the aristotype, either the tension in O-Ti-O 
or the compression in O-Ba-O, or both, must be less 
than in O-Nb-O or O-K-O respectively. 

The only deviation from the aristotype which is 
greater for BaTiO3 than for KNbO3 is the off-centring 
of Ba in its quadrilateral of neighbouring O(1)'s. To 
understand the implications of this, it is instructive to 
consider its development as the consequence of a se- 
quence of other displacements. Fig.4 illustrates it for 
KNbO3. Starting with the aristotype, the first step is 
the displacement of Nb to form strong bonds with the 
two O(2)'s marked A and B. The two latter approach 
one another, forming a rather tightly bound triangle 
with the Nb. If K remains unmoved, the bonds KA 
and K B  will be slightly shortened, KC and KD slightly 
lengthened. But this is wrong from the point of view 
of the electronic charge distribution within A, B, C, 
and D, i.e. of their polarization. On the sides of A and 
B facing K, the electron cloud is more closely involved 
in the binding of the NbO2 triangle, whereas on the 
sides of C and D facing K it is freer of this. Hence one 
may expect a displacement of K in the direction shown, 
to shorten KC and KD and lengthen KA and KB. 
But this will put it off-centre in its quadrilateral of 
neighbouring O(1)'s, the bond KG being now anomal- 
ously short. To equalize the K-O(1) bonds, O(1)(G) 
must move in the same direction. In so doing, it dis- 
torts the regularity of the octahedron. The position 
finally adopted is such as to make the sum of the 
energies associated respectively with the K-O(1) dis- 
tortions and the distortion of the octahedron a mini- 
mum. 

A C 2 2 - 3  
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The difference between the balance points achieved 
by KNbO3 and BaTiO3 is apparent from Table 4. Both 
substances have the same differences between long and 
short K-O(2) or Ba-O(2) bonds (KA and KC of Fig. 
4). For BaTiO3, however, the difference between long 
and short Ba-O(1) bonds is 0.1.2 A, and between long 
and short O(1)-O(2) edges is 0.04 A, while for KNbO3 
the relative magnitudes are roughly interchanged, being 
0 .04A and 0 .10A respectively. This supports the 
earlier suggestion that the K-O(1) links are already in 
compression and resistant to further compression. By 
contrast, either Ba is intrinsically smaller than K or 
it is more capable of polarizing the O atom to give 
unequal bonds; again, both causes may cooperate in 
the observed effect. 

We put forward this qualitative treatment in the 
hope that it may direct attention to aspects of the 
structures where more rigorous treatment might lead 
to very profitable results. 

We wish to express our indebtedness to Dr R. Ueda 
for his collaboration in the first part of the work. One 
of us (L.K.) is grateful for a National Science Founda- 
tion Science Faculty Fellowship. 
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The crystal structure of L-sorbose C6H1206 has been determined from the three-dimensional sharpened 
Patterson function by superposition and convolution methods on an IBM 1620 computer. Both photo- 
graphic and automatic diffractometer data were measured. The former gave a final R index of 8.1 Yo 
and the latter 5.1%. The space group is P212121 with four molecules in a unit cell of dimensions a= 
6.535 (a= 0.004), b = 18.069 (cr= 0"007), c = 6"305 (a= 0"004) A. The molecules are the ct-anomer of the 
pyranose form. They are associated in the crystal by extensive hydrogen-bonding, which includes 
all the hydroxyl groups and the ring oxygen atom. The primary alcohol group is disordered, and this 
leads to an apparent shortening of corresponding C-OH bonds. With the exception of these bonds, the 
C-C and C-O distances do not differ significantly from the mean values of 1"516 and 1.424 A respectively. 

Introduction 

L-Sorbose (C6H1206, also called sorbinose) is found in 
the enzyme hydrolyzate of certain pectins. It is believed 
to exist in both the ketohexose (I) and the pyranose 
(II) forms. 

CH2OH 

I . 
C=O 

I 
HO--C--H 

I / 

HO--C--H 
[ oH 

CH20H 

(I) 

OH 

t CH2OH 
H 

(II) 

As an important intermediate in the commercial syn- 
thesis of ascorbic acid, it is most conveniently obtained 
by the biochemical oxidation of sorbitol (Bertrand, 
1898; Wells, Stubbs, Lockwood & Roe, 1937). Hud- 
son (1925) suggested, on the basis of the calculation 
of the specific rotation, that the common form is the 
a-anomer of the pyranose (II) which is confirmed by 
this work. The conventional numbering of the carbon 
and oxygen atoms used in this paper is shown in Fig. 1. 

Crystal data 

Large transparent crystals were obtained by slow evap- 
oration of an aqueous solution of the compound sup- 
plied by Pfanstiehl Laboratories, Inc. The cell param- 
eters were measured at 22 °C with Cu KC~l and Cu K~2 
radiation using a Picker 4-angle automatic diffracto- 
meter. The crystal density was measured by flotation 
in a liquid mixture of carbon tetrachloride, chloroform 
and bromoform. 


